Multi-Valued Autoencoders and Classification of Large-Scale Multi-Class Problem
نویسندگان
چکیده
Two-layered neural networks are well known as autoencoders (AEs) in order to reduce the dimensionality of data. AEs are successfully employed as pre-trained layers of neural networks for classification tasks. Most of the existing studies conceived real-valued AEs in real-valued neural networks. This study investigated complexand quaternion-valued AEs for complexand quaternion-valued neural networks. Inputs, weights, biases, and outputs in complex-valued AE (CAE) are complex variables, whereas those in quaternion-valued AE (QAE) are quaternions. In both methods, a split-type activation function is used in the hidden and output units. To deal with the images using the proposed methods, pairs of pixels are allotted to complex-valued inputs in the CAE and quartets of pixels are allotted to quaternion-valued inputs in the QAE. Proposed autoencoders are tested and performance compared with conventional AE for several tasks which are encoding/decoding, handwritten numeral recognition and large-scale multi-class classification. Proposed CAE and QAE revealed as good recognition methods for the tasks and outperformed conventional AE with significance performance in case of largescale multi-class images recognition. Keywords—Autoencoder; classification; complex-valued autoencoder; quaternion-valued autoencoder; recognition
منابع مشابه
Strict fixed points of '{C}iri'{c}-generalized weak quasicontractive multi-valued mappings of integral type
Many authors such as Amini-Harandi, Rezapour et al., Kadelburg et al., have tried to find at least one fixed point for quasi-contractions when $alphain[frac{1}{2}, 1)$ but no clear answer exists right now and many of them either have failed or changed to a lighter version. In this paper, we introduce some new strict fixed point results in the set of multi-valued '{C}iri'{c}-gener...
متن کاملA New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملA Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment
This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملA multi-criteria vehicle routing problem with soft time windows by simulated annealing
This paper presents a multi-criteria vehicle routing problem with soft time windows (VRPSTW) to mini-mize fleet cost, routes cost, and violation of soft time windows penalty. In this case, the fleet is heterogene-ous. The VRPSTW consists of a number of constraints in which vehicles are allowed to serve customers out of the desirable time window by a penalty. It is assumed that this relaxation a...
متن کامل